Weekly Lesson Plan For 1st Sem (2022-2023)

Paper :

Month/week	Topic to be covered
November, Week 1-2	Calculas, Geometry and ODE Unit-I
November, Week 3-4	Calculas, Geometry and ODE Unit-I
December, Week 1	Calculas, Geometry and ODE Unit-III
December, Week 2	Calculas, Geometry and ODE Unit-IV
December, Week 3	Calculas, Geometry and ODE Unit-IV
January, Week 1	Algebra Unit-I
January , Week 2	Algebra Unit-II
January, Week 3	Algebra Unit-III
January, Week 4	Algebra Unit-IV
February, Week 1-2	Rivision

Mode of Internal Assessment: Class Test in Offline Mode.

Weekly Lesson Plan For 2nd Sem (2022-2023) Paper : HCC-III, HCC-IV, GE-II

Month/Week	Topic to be covered
March. Week 4	Review of Algebric and order properties of R,
	Vector valued functions
April, Week 1	Classification of sets through cardinality, Limit-
1 /	continuity-differentiation-integration of vector
	functions
April, Week 2	Countable and uncountable sets, 2 nd and higher
1	order ODE with constant coefficeints
April, Week 3	Important results related to countable and
	uncountable sets, Wronskian and method of
	variation of parameter
April, Week 4	Bounded sets and related topics, method of
	undetermined coefficeints
May, Week 1	Introduction to ponit set topology of R, 2 nd order
	homogeneous ODE
May, Week 2	Results related to open and closed sets, System of
-	linear differential equations
May, Week 3	Results related to limit points, derived sets and
-	closure of a sets, System of linear differential
	equations
May, Week 4	Sequence of real numbers, System of linear
-	differential equations
June, Week 1	Sequence of real numbers
June, Week 2	Infinite series

Month/week	Topic to be covered
July, Week 3	Theory of real functions and introduction to
, , , , , , , , , , , , , , , , , , ,	metric spaces Unit-I
July, Week 4	Theory of real functions and introduction to
, , , , , , , , , , , , , , , , , , ,	metric spaces Unit-II
August, Week 1	Theory of real functions and introduction to
e ,	metric spaces Unit-III
August, Week 2	Theory of real functions and introduction to
6	metric spaces Unit-IV
August, Week 3	Group Theory1 Unit-I
C	Logic and sets Unit-I
August, Week 4	Group Theory1 Unit-II
.	Logic and sets Unit-II
September, Week 1	Group Theory1 Unit-III
	Logic and sets Unit-III
September, Week 2	Group Theory1 Unit-IV
September, Week 3	Group Theory1 Unit-V
September, Week 4	Riemann Integration and Series of functions
T T T T	Unit-(I, II)
November, Week 1	Riemann Integration and Series of functions
,	Unit-(III, IV)
November, Week 2	Riemann Integration and Series of functions
,	Unit-V
November, Week 3	Rivision

Weekly Lesson Plan For 3rd Sem (2022-2023) Paper : HCC(V-VII), SE-I

Weekly Lesson Plan For 4th Sem (2022-2023)

Month/Week	Topic to be covered
January, Week 2	Functions of several variables, limit and
5,	continuity of functions of two or more variables
January, Week 3	Partial differentiation, total differentiability and
57	differentiability, sufficient condition for
	differentiability.
January, Week 4	Chain rule for one and two independent
•	parameters, directional derivatives, the gradient
February, Week 1	maximal and normal property of the gradient,
-	tangent planes, extrema of functions of two
	variables, method of Lagrange multipliers,
	constrained optimization problems.
February, Week 2	Double integration over rectangular region,
	double integration over non-rectangular region,
	double integrals in polar co-ordinates
February, Week 3	triple integrals, triple integral over a
	parallelepiped and solid regions. Volume by
	cripie integrais, cylindrical and spherical co-
Manala Waala 2	Change of variables in double integrals and triple
March, week 3	integrals
	Continuous mapping sequential criterion and
	other characterizations of continuity Uniform
	continuity Connectedness connected subsets of
	\mathbb{R} . Compactness: Sequential compactness, Heine-
	Borel property, totally bounded spaces, finite
	intersection property and continuous functions on
	compact sets.
March, Week 4	Definition of vector field, divergence and curl.
April, Week 1	Line integrals, applications of line integrals: mass
	and work. Fundamental theorem for line
	integrals, conservative vector fields,
	independence of path.
	Homeomorphism. Contraction mappings. Banach
	fixed point theorem and its application to
	ordinary differential equation.
April, Week 2	Green's theorem, surface integrals, integrals over
	parametrically defined surfaces. Stoke's theorem,
A '1 XX7 1 O	Vactor analog, subspace, alashra of subspace
April, Week 3	vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors
	linear span linear independence basis and
	dimension dimension of subspaces

Paper : HCC(VIII-X), GE-IV, SE-II

April, Week 4	Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.
May, Week 1	Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bipartite graphs, isomorphism of graphs. Trees and forests, paths and cycles.
May, Week 2 and 3	Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian cycles, theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph.

1 aper - 1100(AI, AII), DSE(I, II)		
Month/Week	Topic to be covered	
July, Week 3	Group Theory II Unit-I	
July, Week 4	Group Theory II Unit-II	
August, Week 1	Group Theory II Unit-III	
August, Week 2	Group Theory II Unit-IV	
August, Week 3	Numerical Methods Unit-I, II	
August, Week 4	Numerical Methods Unit-III, IV	
September, Week 1	Numerical Methods Unit-V, VI	
September, Week 2	Linear Programming Unit-I	
September, Week 3	Linear Programming Unit-II Linear Programming Unit-III	
September, Week 4	Linear Programming Unit-III	
November, Week 1	Numerical Methods Lab	
November, Week 2	Numerical Methods Lab	
November, Week 3	Numerical Methods Lab	

Weekly Lesson Plan 5th Sem (2022-2023) Paper : HCC(XI, XII), DSE(I, II)

Mode of Internal Assessment: Class Test in Offline Mode.

Weekly Lesson Plan For 6th Sem (2022-2023) Paper : HCC(XIII-XIV), DSE(III-IV)

Month/Week	Topic to be covered
January, Week 3	Polynomial rings over commutative rings,
	division algorithm and consequences, principal
	ideal domains, factorization of polynomials,
	reducibility tests, irreducibility tests, Eisenstein
	criterion, and unique factorization in Z [x].
	Divisibility in integral domains, irreducible,
	primes, unique factorization domains, Euclidean
	domains.
	Theory of equations unit-i
January, Week 4	Dual spaces, dual basis, double dual, transpose of
	a linear transformation and its matrix in the dual
	basis, annihilators. Eigen spaces of a linear
	operator, diagonalizability
February, Week 1	Invariant subspaces and Cayley-Hamilton
	theorem, the minimal polynomial for a linear
	operator, canonical forms.
	Theory of equations unit-ii
February, Week 2	Inner product spaces and norms, Gram-Schmidt
5,	orthogonalisation process, orthogonal
	complements, Bessel's inequality, the adjoint of a

	linear operator. Least squares approximation,
	minimal solutions to systems of linear equations.
February, Week 3	Normal and self-adjoint operators. Orthogonal
y y y y y y y y y y	projections and Spectral theorem.
	Theory of equations unit-iii
March, Week 3	Partial differential equations – Basic concepts
······································	and definitions. Mathematical problems. First-
	order equations: classification, construction and
	geometrical interpretation. Method of
	characteristics for obtaining general solution of
	quasi linear equations.
March, Week 4	Canonical forms of firstorder linear equations.
	Method of separation of variables for solving first
	order partial differential equations.
	Theory of equations unit-iv
April, Week 1	Derivation of heat equation, wave equation and
	Laplace equation. Classification of second order
	linear equations as hyperbolic, parabolic or
	elliptic.
April, Week 2	Reduction of second order linear equations to
-	canonical forms.
April, Week 3	Countable and Uncountable Sets, Schroeder-
-	Bernstein Theorem, Cantor's Theorem.
April, Week 4	Cardinal numbers and cardinal arithmetic.
May, Week 1	Continuum Hypothesis, Zorns Lemma, Axiom of
	Choice. Wellordered sets, Hausdorff's
	maximalprinciple. Ordinal numbers.
May, Week 2	Topological spaces, basis and Sub basis for a
	topology, subspace topology, interior points, limit
	points, derived set, boundary of a set, closed sets,
	closure and interior of a set.
May, Week 3	Continuous functions, open maps, closed maps
• ·	and homeomorphisms.
May, Week 4	Product topology, quotient topology, metric
	topology, Baire category theorem.