Session: 2021-22

Weekly Lesson Plan For 1st Sem (2021-2022) Paper: HCC(I-II)

Month/week	Topic to be covered
November, Week 3 (Offline)	Calculas, Geometry and ODE Unit-I
November, Week 4(Offline)	Calculas, Geometry and ODE Unit-I
December, Week 1 (Offline)	Calculas, Geometry and ODE Unit-III
December, Week 2 (Offline)	Calculas, Geometry and ODE Unit-IV
December, Week 3 (Offline)	Calculas, Geometry and ODE Unit-IV
January , Week 1 (Online)	Algebra Unit-I
January, Week 2 (Online)	Algebra Unit-II
January, Week 3 (Online)	Algebra Unit-III
January, Week 4 (Online)	Algebra Unit-IV
February, Week 1 (Online)	Rivision

<u>Mode of Internal Assessment:</u> Online Class Test Using Google Classroom Platform/Class test in Offline Mode depending on COVID Situation.

Weekly Lesson Plan For 2nd Sem (2022) Paper: HCC-III, HCC-IV, GE-II

Month/Week	Topic to be covered
March, Week 3	Review of Algebric and order properties of R,
	Vector valued functions
March, Week 4	Classification of sets through cardinality, Limit-
	continuity-differentiation-integration of vector
	functions
April, Week 1	Countable and uncountable sets, 2 nd and higher
	order ODE with constant coefficeints
	Important results related to countable and
April, Week 2	uncountable sets, Wronskian and method of
	variation of parameter
April, Week 3	Bounded sets and related topics, method of
April, week 3	undetermined coefficeints
Amril Wash 4	Introduction to ponit set topology of R, 2 nd order
April, Week 4	homogeneous ODE
May Wook 1	Results related to open and closed sets, System of
May Week 1	linear differential equations
	Results related to limit points, derived sets and
May, Week 2	closure of a sets, System of linear differential
	equations
May Wook 2	Sequence of real numbers, System of linear
May, Week 3	differential equations
May, Week 4	Sequence of real numbers
June, Week 1,2	Infinite series

Mode of Internal Assessment: Class Test in Offline Mode.

Session: 2021-22

Weekly Lesson Plan For 3rd Sem (2021-2022) Paper: HCC(V-VII), SE-I

Topic to be covered
Theory of real functions and introduction to
metric spaces Unit-I
Theory of real functions and introduction to
metric spaces Unit-II
Theory of real functions and introduction to
metric spaces Unit-III
Theory of real functions and introduction to
metric spaces Unit-IV
Group Theory1 Unit-I
Logic and sets Unit-I
Group Theory1 Unit-II
Logic and sets Unit-II
Group Theory1 Unit-III
Logic and sets Unit-III
Group Theory1 Unit-IV
Group Theory1 Unit-V
Riemann Integration and Series of functions
Unit-(I, II)
Riemann Integration and Series of functions
Unit-(III, IV, V)

<u>Mode of Internal Assessment:</u> Online Class Test Using Google Classroom Platform/Class test in Offline Mode depending on COVID Situation.

Weekly Lesson Plan For 4th Sem (2022)

Paper: HCC(VIII-X), GE-IV, SE-II

Month/Week	Topic to be covered
March, Week 3	Functions of several variables, limit and
	continuity of functions of two or more variables
March, Week 4	Partial differentiation, total differentiability and
	differentiability, sufficient condition for
	differentiability.
April, Week 1	Chain rule for one and two independent
	parameters, directional derivatives, the gradient
April, Week 2	maximal and normal property of the gradient,
	tangent planes, extrema of functions of two
	variables, method of Lagrange multipliers,
	constrained optimization problems.
April, Week 3	Double integration over rectangular region,
	double integration over non-rectangular region,
	double integrals in polar co-ordinates
April, Week 4	triple integrals, triple integral over a
	parallelepiped and solid regions. Volume by

Session: 2021-22

	triple integrals, cylindrical and spherical co-
	ordinates.
May, Week 1	Change of variables in double integrals and triple
	integrals.
	Continuous mapping, sequential criterion and
	other characterizations of continuity. Uniform
	continuity. Connectedness, connected subsets of
	R. Compactness: Sequential compactness, Heine-
	Borel property, totally bounded spaces, finite
	intersection property and continuous functions on
	compact sets.
May, Week 2	Definition of vector field, divergence and curl.
.,,	Line integrals, applications of line integrals: mass
	and work. Fundamental theorem for line
	integrals, conservative vector fields,
May, Week 3	independence of path.
way, week 5	Homeomorphism. Contraction mappings. Banach
	fixed point theorem and its application to
	ordinary differential equation.
	Green's theorem, surface integrals, integrals over
May Week 4	parametrically defined surfaces. Stoke's theorem,
May, Week 4	1 -
	the Divergence theorem.
	Vector spaces, subspaces, algebra of subspaces,
June, Week 1	quotient spaces, linear combination of vectors,
ŕ	linear span, linear independence, basis and
	dimension, dimension of subspaces.
	Linear transformations, null space, range, rank
	and nullity of a linear transformation, matrix
	representation of a linear transformation, algebra
	of linear transformations. Isomorphisms.
	Isomorphism theorems, invertibility and
	isomorphisms, change of coordinate matrix.
	Definition, examples and basic properties of
June, Week 2	graphs, pseudo graphs, complete graphs, bipartite
	graphs, isomorphism of graphs. Trees and forests,
	paths and cycles.
	Eulerian circuits, Eulerian graph, semi-Eulerian
	graph, theorems, Hamiltonian cycles, theorems
	Representation of a graph by matrix, the
	adjacency matrix, incidence matrix, weighted
	graph.
Made of Internal Aggegements Class Test in Offic	

Mode of Internal Assessment: Class Test in Offline Mode.

Session: 2021-22

Weekly Lesson Plan 5th Sem (2021-2022) Paper: HCC(XI, XII), DSE(I, II)

Month/Week	Topic to be covered
September, Week 1 (Online)	Group Theory II Unit-I
September, Week 2,3 (Online)	Group Theory II Unit-II
September, Week 4 (Online)	Group Theory II Unit-III
October, Week 1 (Online)	Group Theory II Unit-IV
October, Week 2 (Online)	Numerical Methods Unit-I, II
November, Week 3,4 (Offline)	Numerical Methods Unit-III-VI
December, Week 1,2 (Offline)	Linear Programming Unit-I,II
December, Week 3,4 (Offline)	Linear Programming Unit-III
	Linear Programming Unit-I,II
January, Week 1,2 (Online)	Linear Programming Unit-III
	Numerical Methods Lab
January, Week 3,4 (Online)	Numerical Methods Lab

<u>Mode of Internal Assessment:</u> Online Class Test Using Google Classroom Platform/Class test in Offline Mode depending on COVID Situation.

Weekly Lesson Plan For 6th Sem (2022) Paper: HCC(XIII-XIV), DSE(III-IV)

raper: nec(Am-Arv); DSE(m-rv)	
Month/Week	Topic to be covered
March, Week 3,4	Polynomial rings over commutative rings,
	division algorithm and consequences, principal
	ideal domains, factorization of polynomials,
	reducibility tests, irreducibility tests, Eisenstein
	criterion, and unique factorization in $Z[x]$.
	Divisibility in integral domains, irreducible,
	primes, unique factorization domains, Euclidean
	domains.
	Theory of equations unit-i
	Dual spaces, dual basis, double dual, transpose of
	a linear transformation and its matrix in the dual
	basis, annihilators. Eigen spaces of a linear
April, Week1,2	operator, diagonalizability, invariant subspaces
	and Cayley-Hamilton theorem, the minimal
	polynomial for a linear operator, canonical forms.
	Theory of equations unit-ii
	Inner product spaces and norms, Gram-Schmidt
	orthogonalisation process, orthogonal
	complements, Bessel's inequality, the adjoint of a
April Week 3 /	linear operator. Least squares approximation,
April, Week 3,4	minimal solutions to systems of linear equations.
	Normal and self-adjoint operators. Orthogonal
	projections and Spectral theorem.
	Theory of equations unit-iii
May, Week 1,2	Partial differential equations – Basic concepts
	and definitions. Mathematical problems. First-

Session: 2021-22

	order equations: classification, construction and
	geometrical interpretation. Method of
	characteristics for obtaining general solution of
	quasi linear equations. Canonical forms of
	firstorder linear equations. Method of separation
	of variables for solving first order partial
	differential equations.
	Theory of equations unit-iv
	Derivation of heat equation, wave equation and
	Laplace equation. Classification of second order
May, Week 3,4	linear equations as hyperbolic, parabolic or
	elliptic. Reduction of second order linear
	equations to canonical forms.
	Countable and Uncountable Sets, Schroeder-
	Bernstein Theorem, Cantor's Theorem. Cardinal
	numbers and cardinal arithmetic. Continuum
June, Week 1	Hypothesis, Zorns Lemma, Axiom of Choice.
	Wellordered sets, Hausdorff's maximalprinciple.
	Ordinal numbers.
June, Week 2	Topological spaces, basis and Sub basis for a
	topology, subspace topology, interior points, limit
	points, derived set, boundary of a set, closed sets,
	closure and interior of a set. Continuous
	functions, open maps, closed maps and
	homeomorphisms. Product topology, quotient
	topology, metric topology, Baire category
	theorem.
N. I. O. I. A. C.	37.1

Mode of Internal Assessment: Class Test in Offline Mode.